
576 IEEE TRANSACTIONS ON MJCROWAVE THEORY AND TECHNIQUES,

1 +qcoth ((%i)
ji(~) =

o {e.[ei + coth (L%)] + C, coth (BcJ) [1 + ei coth (&i) 1)

andi = 1 or2, corresponding to Fig. l(a) or (b), respectively.

When a perturbation technique is used for the microstrip line filled with the materials that have small
losses (u<<,oe), the following expression forthehne conductance Gicanbe derived from (6):

Gi 1

–/

- {a,[2e, +(l+e?) coth(6t,) ]+uscoth (8d)[l+ coth(6~{) ]') .Z,(p)dp,
—. i=lor2 (7)
c%, 27reoq~ –m 6{e,[,, +coth(@ J]+e.coth(@)[l +.tcoth(@i)])2

where u, rmd .s~ are the conductivities of the substrate and the
loadlng material, respectively.
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Circular Bends in Dielectric Frame Beam Waveguides

P. F. CHECCACCI, R. FALCIAI, AND A. M. SCHEGGI

Abstract—An investigation is described on circular bends in

beam waveguides constituted by dielectric frames [5]. A uniform

bending of the guide axis is obtained by tilting each frame by a

small angle; however, due to the phase correction performed by the

dielectric frame, the losses introduced by the bending can be made

lower than those of an analogously bent iris waveguide. A numeri-

cal analysis is performed on the basis of the analogy between beam

waveguides and open resonators which permits the assessment, in
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a number of cases, of the maximum permissible amount of tilting

and the corresponding optimum frame dimensions in view of ac-

ceptable losses. The losses due to mode conversion are also evalu-

ated when considering the connection between a straight and a

curved section of the waveguide.

It is well known that beam waveguides cannot be made to follow

a curved path like tubular waveguides, but bends can be obtained

by the use of prisms or mirrors. However, curvatures with large
radii (like those encountered to follow the ground contour or to
avoid obstacles along the path ) can be achieved by lateral displace-
ments of the elements in a lens waveguide or by a sequence of small
angle changes at each aperture of an iris waveguide [1 ]–[4].

The present short paper is concerned with an investigation of

circular bendg in dielectric frame beam waveguides [5], [6], along

with some considerations on the transition between straight and

curved sections of the guide.

The investigation has been carried out on the basis of the analogy

between open resonators and beam waveguides. In this respect it

is expedient to recall that the dielectric frame beam waveguide is

equivalent to the step rimmed Fabry–Perot resonator [6], [7]. The

rims control the field at the edges of the mirrors giving rise to a

periodical enhancement or decrease of the losses as the rim thick-
ness varies. Such control can also be made at each edge almost
independently and without altering appreciably the overall field
shape.

A beam waveguide of constant radius of curvature is equivalent

to a tilted rimmed mirror resonator. The diffraction losses for the

fundamental mode of a Fabry–Perot resonator with tilted mirrors

have been evaluated for different amounts of tilting and by varying

the Fresnel number. Such losses (Fig. 1 ) have been compared with

those evaluated for the same resonators in the presence of rims.
The rim dimensions (width and thickness) here are those correspond-

ing to minimum loss and, in fact, the losses of the rimmed resonator
are much lower than those in the absence of rim. This decrease is

due to the rims placed at the largest distance edges of the mirrors
which limit the field spill-over caused by the tilting. Equal curves
are obtained by placing the rims also at the nearest distance edges,

their effect being negligible due to the extremely low value of the
field at that side. Consequently, thk rim can be suppressed; how-
ever, when considering the corresponding beam waveguides (Fig. 2),

thk rim is maintained for constructive reasons and the curved sec-

tion waveguide results constituted by a number of cells with frames

tilted one with respect to the other by the same angle. The guidance
in such curved sections is achieved through the combined effects of

frame tilting and phase-front correction performed by the frame
itself at the external side of the curve.

The diffraction losses per cell are those of the equivalent reso-
nator (Fig. 1). However, other losses are present, and precisely, losseg
due to mode conversion at the transition between straight and
curved sections and vice versa, as well as reflection losses due to
impedance mismatching at the same transitions. These last on-
will be neglected in our treatment. The mode conversion losses of
interest in this case are those relative to the zero mode which at
the transitions is partially converted into higher order ones. The
energy lost in this conversion was evaluated by considering the
ratio between the energy of the zero mode for the input cell and

the energy of the resultant zero mode of the output cell.
Fig. 3 shows the mode conversion losses in the case N = 2.5

plotted versus . (amount of tilting of the output cell) for different

values of co (amount of tilting of the input cell). The value co = O
corresponds to the particular cme of a transition between a straight
and a tilted cell. Values of the radii of curvature corresponding to
the considered values of .O and c are also indicated which are valid in
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Fig. 1. Diffraction power losses of a tilted mirror Fabry–Perot reso-
nator for different amounts of tilting, with and without rims, at the
largest distance edges of the mirrors, versus Fresnel number.
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Fig. 2. The tilted mirrors resonator with a rim at the largest distance
edges and the equivalent beam wavegnide.
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Fig. 3. .Mode conversion losses at the tranqiti.On be*Ween *WO difle?-
ently tdted cells plotted versus amount of tlltmg e The lower scale 1s
vrdidforthecase2a = 2S.6k; d = S1.3L N = 2.5.

the case N = 2.5 with 2a = 28.6A, d = 81.3A. These curves give
also the mode conversion losses for the inverse transition (for in-
stance from a tilted to a parallel cell). In the considered range of

tilting, themode conversion losses turn outtobe much higher than
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Fig. 4. Two examples of curved sections connecting two straight wave-
guides: diffraction plus mode conversion losses plotted versus number
of cells (continuous and dotted lines) compared with the losses of
straight sections of equal lengths (dotted–dashed hnes).

the diffraction losses per cell, so that they are important only for
short curved sections.

Finally, twotypical examples of curved sections were considered.
Again, with Fresnel number N = 2.5, the cases were examined of

curved sections connecting two straight waveguides with cells

tilted bye = 0.025~ande = 0.05x, respectively.

Fig. 4showsthe total power losses forthe zero mode (diffraction
plus conversion losses) evaluated directly when the number of

cells varies. The dotted curves correspond to the same losses esti-

mated on the basis of the values given by the curves of the diffrac-

tion and mode conversion losses. For a high number of cells the
two curves coincide because allthehlgher modes arevanishhg due
to the section length; consequently, the input and exit transitions
result independently. For a lower number of cells, due to the inter-
ference among the zero mode and the other modes, the conversion
losses at the second transition depend on the particular considered

cell and, hence, the loss curve oscillates. The dotted–dashed line
corresponds to the losses of a straight waveguide section consti-

tuted by the same number of cells as the curved section. One can

observe that the loss increase due to curvature is still acceptable,

especially taking into account the small values of R in the considered

examples. For instance, an angle of 20° can be made with a section
of 100 cells with R = 23 300k or with a section of 50 cells with
R = 11650L The resultant loss increases are 8.5 and 12.8 dB,

respective y.

In conclusion, the performed analysis has shown that circular
bends can be obtained in dielectric frame beam waveguides with
reasonably small radii of curvature, by simply tilting one frame
with respect to the other by a small angle. Due to the phase front
correction performed by the frame at the external side of the curve,

the diffraction losses are lower than those of an equally curved iris
waveguide section. The mode conversion losses evaluated on the

basis of the ratio between the energy of the zero-order modes at the
two sides of the transition between two differently tilted cells are

relevant in comparison with diffraction losses per cell. However,

the higher the number of cells constituting the curved section, the
less important become the mode conversion losses.

[11

[2]

[3]

[4]

[5]

[6]

REFERENCES
D. MareU~e, ((proDa=ation Of light rays thmu~h a lems--ave~tide
with curved axis,’’ Bell Sgist. Tech. .J., VOI.44, P. 2065, 1965.
G. Goubau, Beam Wawgu%des-Adrx2ncesin Microwaw. New York:
Academic, 196S, pp. 110-123.
J. W. Mink. “EX erimental investigation with an iris beam wave-
gnide, ” IEEE #runs. Microwave Theory Tech. (CoHesP. ), vol.
MTT-17, pp.4S–49, Jan. 1969.
——— “Assessment of optical iris-beam wavegnides, ” EJeCtrOn. LW..
vol. +, 527, 1971.
P. F. ~heccacci and A. M. Scheggi, “Dielectric frame beam wave-
@de,” Proc. IEEE (Lett. ), vol. 59, p 1024–1025, June 1971.
P. F. Checcacci, R. Falciai, and A. #. Scheggi, “Phase step beam



578 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1974

wa.veguide, ” IEEE Trans. Microwave Theocw Tech., vol. MTT-20,
P.60S–613, Sept. 1972.

[7] ?. F. Checcacci, A. Consorting. and A. M. Scheggi, “Effecto T,mirrOr
tires on modes aud losses of a planar Fabry-Perot resonator, AP@.
OPt., vol. 10, P. 1363, 1971.

[s] p.~r~heccacci and A. M. Scheggi, “O~~pfre~~t~;69*thr immed
“ in Proc. European Mtcrowaee . .

“’Open resonrttiors with rimmed mirrc%,” in 1969 Inst. Elec.
GConf. Publ. No. 58, P. 314, 1969.

(J Degradation in Varactor-Tuned Oscillators

S.F. PAIK, MEMBER, IEEE

Abstracf—A general analysis of varactor-tuned negative-resist-

ance oscillators is presented to show the varactor loading effect on
theoscillator Q. The external Qof thevaractor loaded circuit nor-

malized with respect to the unperturbed external Q is plotted as a

function of thetuning range forseveral values of tie varactor Qand

the capacitance ratio.

In varactor-tuned oscillators, the primary factor limiting the

tuning range istheresistive loading effect of thevaractor diode. As
the diode is coupled strongly into the oscillator circuit, the tuning
range increzses at the expense of the oscillator Q. The tuning range
attainable with a given diode, therefore, is determined by the allow-
able degradation of the oscillator Q and the accompanying power

dksipation. Cawsey [1] has presented an analytical evaluation of

this effect, but hk results did not include an explicit relation between
theoscillator Q and the tuning range. Inasmuch as several critical
parameters of oscillators, such as the FM noise and the temperature

stability, are directly related to the external Q of the oscillator, it

is desirable to have a quantitative measure of the tradeoff between

the oscillator Q and the tuning range. In thk note, we present an
analysis of varactor-tuned negative-resistance oscillators and derive

a general expression for the external Q as a function of the commonly

quoted varactor parameters and the tuning range.
Fig. 1 shows circuit models of a varactor-tuned negative-resistance

oscillator (e.g., IMPATTOr Gunn diode oscillators). In practice, both
the varactor and the load may be coupled to the negative-resistance
element through a transformer, andthecircuit parameters indicated

in Fig. 1 refer to transformed quantities. Following the common
practice, the varactor diode is represented by a series RC circuit, in
Fig. 1(a), andallparasitic elements areassumed to be includedin

the main resonator. This equivalent circuit is valid at frequencies
near resonance if the varactor impedance (including the package
parasitic ) is a emooth function of frequency and bias voltage devoid
of loops in the impedance plot.

The varactor capacitance Cv is a function of the bias voltage,

decreasing monotonically from Cv, at zero bias to CVB at breakdown.
The series resistance R~ is assumed to be constant at all bias levels.

Varactors are usually characterized by two invariant parameters
defined in terms of Cv and RS: r, the capacitance ratio, and its quality
factor Qv:

Cve
~=—>1

CVB
(1)

Qv= 1
(coRsCV,)

(2)

Since theoscillator circuit in Fig. 1 isrepresented byashunt resonant

circuit, it is convenient to convert the varactor into its shunt equiva-
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Fig. 1. (a) Equivalent circuit of a varactor-tuned negative-resistance
oscillator with the varactor represented by a series RC circuit. (b)
With the varactor represented by a parallel RC circuit.

lent form as ehown in Fig. 1(b). The shunt elements are

‘S=(&)[1++j2]-’=~SQ#&]-’ ,,)

cvs = CV[l + (CV/CVO)’/Q#]-’ N Cv. (4)

The approximation is valid if QV2 >>1.

In the absence of the varactor, the resonant frequency and the
external Q of the oscillator are

~. = (Loco )–wz) (5)

Q,x, = wC,R (6)
where

R=\–Rl=R~.

When the varactor is introduced, the frequency of the oscillation
can be tuned from

6X = [Lo (co + Cve) ]–m
to

W = [LO(CO + Cvk?)]--(l)n).

Assuming the difference between CVO and CVB is a small fraction
of the total capacitance (CO + CVO), the fractional tuning range

referenced to w may be expressed as a function of the capacitance
ratio as follows:

A~/j m (1/2) [(cvo – cvB)/(co + CVO)]

1 (1 – 1/?)

= i (1 + Co/cV,) “
(7)

The external Q of the varactor-tuned oscillator reaches its lowest

value at zero bins, since the varactor at zero bias introduces the
greatest perturbation and its own Q is at its lowest. The external
Q of the oscillator at zero bias is

“ex’=”(cO+cvO)[:HJ
Q.,tQti Qv——

(R/Rsl + Qv’ + 1 + (Rs/R)Q# “
(8)

This expression may be normalized with respect to the unperturbed

external Q in terms of the capacitance ratio, the tuning range, and

the normalized varactor Q using (2), (6), and (7):

Q& = [1 +2z?’(q – 1)/(, – 1)]-1
e.

where

x = Af/fl

and

q = Qe.t/Qv.

(9)


